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This paper presents numerical study about the in#uence of the shear #exibility, due to
either bending and warping, on the out-of-plane free vibration of continuous horizontally
curved thin-walled beams with both open and closed sections. This study was made by
means of a recently developed "nite element formulation for shear deformable curved
thin-walled beams. The model is brie#y reviewed and is used to obtain natural frequencies of
continuous I-beams and box beams. A parametric study was performed in order to elucidate
the in#uence of shear deformability, on the dynamic behavior of continuous thin-walled
curved beams, for di!erent slenderness ratios, cross-sectional characteristics and boundary
conditions.
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1. INTRODUCTION

Many designers of engineering structures such as piping systems, highway bridges and
machine elements take advantage of the high strength-to-weight ratio of thin-walled beams.
Hence, extensive research on the dynamic behavior of these members has been made.
Chidamparam and Leissa [1] classi"ed most of the recent available papers concerning the
dynamics of curved beams, some of them dealing with thin-walled beams. In the 1960s
Vlasov [2] presented a dynamic theory of curved thin-walled beams, which was used
successfully in several applications. Snyder and Wilson [3] used Vlasov's theory to study
the dynamics of continuous curved thin-walled beams. They solved the equations by means
of a closed-form solution, in order to provide numerical information for these structural
members, which may be considered as a "rst approach in the design of highway, rail, rapid
transit and guideway structures. Other researchers employed Vlasov's theory and used
numerical approaches (like di!erential quadrature method) to "nd natural frequencies of
thin-walled curved beams with open sections [4].

However, Vlasov's theory does not consider shear deformability which should have
remarkable importance when vibrations associated with higher modes have to be
determined. A few papers deal with vibrations of shear deformable curved thin-walled
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102 M. T. PIOVAN E¹ A¸.
beams. Kawakami et al. [5] studied the in-plane and out-of-plane vibrations of curved
thin-walled considering shear e!ects associated to the lateral motion although neglecting
the warping shear deformability. On the other hand, Fu and Hsu [6] analyzed statics of
thin-walled beams taking into account warping shear e!ect, but not the bending shear
#exibility. According to the author's knowledge there are only a few studies dealing with
vibrations of curved thin-walled beams that consider the shear e!ect in a full form [7}9].
On the other hand, Piovan et al. [10] developed a theory which includes shear e!ects for the
case of bisymmetrical H-sectional shape subjected to initial stresses. While the out-of-plane
vibration analysis of curved thin-walled beams over multiple supports have been performed
by many authors [3, 1}13], analysis including shear #exibility is, according to the authors'
knowledge, non-existent.

The main objective of this paper is to elucidate the role of the shear #exibility, due to both
bending and warping, on the out-of-plane free vibration behavior of continuous
horizontally curved thin-walled beams with several end supports.

To accomplish this purpose a "nite element formulation, recently developed by the
authors [8, 10], for the dynamic analysis of shear #exible thin-walled curved beams is
employed.

The present "nite element solution is applied to uniform thin-walled curved beams with
three spans of equal lengths. H-cross-sectional shape and rectangular closed sections are
considered. The "rst six free-vibration frequencies and the corresponding mode shapes are
calculated over a range of geometrical parameters such as horizontal radius of curvature
and angular openings. A convergence study is also performed on the "nite element
employed in order to enhance its quality.

From the numerical study, conclusions are obtained with respect to the in#uence of the
shear deformability for di!erent slenderness ratios and cross-sectional characteristics.

2. MATHEMATICAL MODEL

The out-of-plane vibration for horizontally curved beams shown in Figure 1 is
considered. As it may be seen, R denotes the radius of curvature at the centroid, ¸ is the
length of the beam between outer supports, e

A
is the thickness of the walls, b and h are the

width and height of the section, and a is the angle between outer supports. Also, it may be
seen in Figure 1 that a right-hand co-ordinate system is used. Axes y and z are principal
centroidal axes of the beam cross-section and x is tangent to the curved axis of this member.
The assumptions of the model follow concepts of Cortinez et al. [8] and Cortinez and Rossi
Figure 1. Analyzed beams: (a) H cross-section, (b) closed cross-section.
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CURVED THIN-WALLED BEAMS 103
[14] and they are as follows. The original cross-section of the beam is preserved; the stress
tensor is considered as a composition of a Saint Venant pure torsion state and a membranal
state. The variation of curvature through the thickness is neglected for shear deformations.
Then the displacement "eld can be written in the form [8]

u
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z
(x, t)#u(h (x, t)#h

z
(x, t)/R),
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(x, t)!z/(x, t), u
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where v
c
is the vertical displacement of the centroid, / is the torsional rotation, h

z
is the

#exural rotation around the centroidal axis z, h is a measure of the warping along the beam,
u is the warping function given by expressions (2) and (3) for the H-cross-section and
rectangular closed section respectively [2, 15]:
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where r is the distance from the shear center to the tangent at a point in the middle line of
the wall, m is the length of the cross-sectional thin wall and t is the shear strain due to Saint
Venant torsion normalized with respect to d//dx according to Krenk and Gunneskov [15].
It has to be noted that expressions (1) reduce to Vlasov's displacement "eld used by Yang
and Kuo [16] if the internal restraints h

z
"Lv

c
/Lx and h"L//Lx are predetermined.

Therefore, the present model contains Vlasov's theory as a special case. When the restraints
mentioned above are not imposed the shearing strain components are not zero in the
middle line of the walls, as indicated by CortmHnez and Rossi [8]. Thus the model allows shear
deformability. The derivation of present model may be followed in a detailed form in
references [8, 10].

The di!erential equations, which govern the out-of plane free vibration of the curved
beam are [8]
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where Q
y
, M

z
, B, ¹

w
and ¹

sv
denote shear force, bending moment, bimoment,

#exural-torsional moment and Saint Venant torsion moment respectively. These
generalized stresses are expressed in terms of the generalized displacement (1) as
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104 M. T. PIOVAN E¹ A¸.
where A is the cross-sectional area, I
z

and I
y

are moments of inertia with respect to axes
x and y, respectively, C

w
is the warping constant, J is the torsion constant, I

0
is the polar

moment of inertia and K
y
and K

w
are shear rigidity factors deduced by Cortinez and Rossi

[14, 17].
The boundary conditions at a simple support are zero vertical de#ection (v

c
"0),

zero torsional rotation (/"0), zero #exural moment (M
z
"0) and zero bimoment

(B"0), although taking into account equations (8b,c) they can be expressed in condensed
form in equation (9). For a clamped support the boundary conditions are shown in
expression (10):
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A "nite element based on the present model was developed in references [8, 10]. This
element may be considered a generalization for curved beams of an earlier "nite developed
for straight beams by Cortinez and Rossi [14]. The vector that contains the nodal
unknowns is denoted by q and it is
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For the out-of-plane vibration displacement "eld may be interpolated as indicated by
equations (12a}d), where coe$cients b

i
and d

i
are indeterminate functions depending on

time:
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where l
e
is the element length. The element interpolated with the displacement "eld (12a}d)

is shear locking free and it could be reduced, as a limiting case, to a Vlasov element [8, 10].
This is possible when a large shear rigidity (say K

w
, K

y
P1020) is imposed in the sti!ness

matrix, and on the other hand, when #exure and warping rotary inertias are neglected (say
C

W
"I

z
"0) in the mass matrix. Also, this curved element reduces to the straight beam

"nite element of CortmHnez and Rossi [14] when RPR.
Carrying out the conventional steps of the "nite element method for free-vibration

problems, one arrives at the expression

[K!X2M]Q*"0, (14)

where K is the global matrix, M is the global mass matrix, Q* is the displacement vector
independent of time, X"2nf is the circular frequency of vibration and f is the frequency
(measured in Hz).
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Figure 2. Diagram of the continuous beam studied, with the boundary conditions (BC
i
) considered l

a
, l

b
, l

c
, a

a
,

a
b
, a

c
are lengths and subtended angles of each span. a is the subtended angle between outer supports.

TABLE 1

Properties of the sections used in the numerical studies

Property Open H-section Closed-section

Cross-sectional area: A (m2) 2)40E!02 2)40E!02
Inertia moment: I

z
(m4) 7)47E!04 5)33E!04

Polar moment: I
0

(m4) 9)61E!04 7)20E!04
Warping constant: C

w
(m6) 8)55E!06 3)53E!07

Torsion constant: J (m4) 3)20E!06 4)26E!04
Flexural shear rigidity factor: K

y
(m2) 7)03E!03 1)46E!02

Torsion shear rigidity factor: K
w

(m4) 5)54E!04 5)33E!05
Longitudinal modulus of elasticity: E (N/m2) 2)10E#11 2)10E#11
Transversal modulus of elasticity: G (N/m2) 8)07E#10 8)07E#10
Mass density: o (kg/m3) 7830 7830
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3. GEOMETRICAL MODELS

A general diagram of the continuous beam studied here is shown in Figure 2. It consists of
three circular spans of length l

a
, l

b
, l

c
(thus, ¸"l

a
#l

b
#l

c
), with four supports, where the

inner ones are simply supported and the outer ones may be simply supported or clamped.
For this general outline, two particular cases of outer boundary conditions were selected:
simply supported at both ends (SS}SS) and clamped at both ends (C}C). The spans have
equal length (l

a
"l

b
"l

c
). The dimensions for the open section H were b"h"0)40 m,

whereas for the boxed rectangular section b"h/2"0)20 m. For both sections the same
wall thickness e

A
"0)02 m were employed. The material properties for both sections as well

as sectional features are listed in Table 1.

4. NUMERICAL RESULTS

4.1. CONVERGENCE CHECK

In order to check the element performance, a set of comparative tests was performed with
analytical results, as well as convergence studies. In Table 2, a convergence check of the "rst
six frequencies (measured in Hz) is given for the outer boundary conditions SS}SS with
JSV=20003055=Ravi=VVC



TABLE 2

Convergence checks of the ,rst six frequencies (Hz). Results with shear -exibility are depicted in column (a). Results without shear -exibility in
column (b)

Column a a"453 R"2 m Column b a"453 R"2 m

Elements Elements
Analytical Analytical

f 21 45 81 [9] f 21 45 81 [9]

1 1567)79 1559)17 1557)53 1557)17 1 2391)58 2391)60 2390)79 2395)49
2 1576)27 1568)34 1566)65 * 2 3058)87 3058)84 3057)80 *

3 1585)68 1577)13 1575)50 * 3 3639)47 3639)47 3639)57 3633)01
4 1768)83 1761)14 1760)01 1759)21 4 4396)88 4396)57 4395)12 *

5 1846)58 1838)54 1837)02 * 5 4539)27 4539)17 4539)31 *

6 2041)15 2030)72 2028)73 * 6 6309)17 6308)54 6308)68 *

a"903 R"4 m a"903 R"4 m

f 21 45 81 [9] f 21 45 81 [9]

1 138)61 137)57 137)31 137)24 1 145)07 145)08 145)03 145)06
2 192)31 191)32 191)12 * 2 219)01 219)02 218)93 *

3 287)57 286)24 286)09 * 3 337)31 337)29 337)15 *

4 309)81 308)91 308)69 308)58 4 378)54 378)56 378)53 378)45
5 327)85 326)80 326)54 * 5 445)43 445)45 445)43 *

6 367)24 365)76 365)47 * 6 605)57 605)56 605)56 *

a"1203 R"8 m a"1203 R"8 m

f 21 45 81 [9] f 21 45 81 [9]

1 12)99 12)38 12)25 12)18 1 12)26 12)26 12)26 12)26
2 29)55 29)13 29)04 * 2 30)36 30)35 30)35 *

3 53)32 52)81 52)70 * 3 55)58 55)56 55)56 *

4 87)35 85)81 85)47 85)31 4 88)14 88)06 88)06 88)06
5 101)68 101)29 101)20 * 5 105)14 105)14 105)15 *

6 105)83 104)47 104)18 * 6 110)53 110)43 110)42 *

106
M

.T
.P

IO
V

A
N

E
¹

A
¸

.

JSV
=

20003055
=

V
V

C
!

R
avi



Figure 3. Modes of the analytical results taken from reference [9]: (a) third frequency of a single-span beam,
(b) sixth frequency of a single span beam.

TABLE 3

Comparisons with non-dimensional frequencies: I, reference [3]; II, present model

a (deg) Parameters Model p
1

p
2

p
3

p
4

p
5

p
6

45 C"0)05 I 0)975 1)265 1)861 3)987 4)548 5)584
m"0)005 II 0)976 1)265 1)862 3)988 4)548 5)584
D"0)001 Dp

i(II)
!p

i(I)
D/p

i(I)
(%) 0)10 0)00 0)05 0)03 0)00 0)00

C"2 I 0)992 1)275 1)866 3)993 4)552 5)587
m"0)005 II 0)992 1)275 1)866 3)993 4)552 5)587
D"0)01 Dp

i(II)
!p

i(I)
D/p

i(I)
(%) 0)00 0)00 0)00 0)00 0)00 0)00

90 C"0)05 I 0)844 1)166 1)798 3)901 4)477 5)529
m"0)005 II 0)845 1)167 1)798 3)903 4)479 5)531
D"0)001 Dp

i(II)
!p

i(I)
D/p

i(I)
(%) 0)11 0)09 0)00 0)05 0)04 0)03

C"2 I 0)967 1)254 1)850 3)968 4)530 5)567
m"0)005 II 0)967 1)254 1)850 3)968 4)530 5)568
D"0)01 Dp

i(II)
!p

i(I)
D/p

i(I)
(%) 0)00 0)00 0)00 0)00 0)00 0)02

180 C"0)05 I 0)523 0)899 1)568 3)377 4)030 5)157
m"0)005 II 0)523 0)899 1)569 3)381 4)034 5)160
D"0)001 Dp

i(II)
!p

i(I)
D/p

i(I)
(%) 0)00 0)00 0)06 0)12 0)10 0)06

C"2 I 0)866 1)171 1)785 3)866 4)438 5)486
m"0)005 II 0)866 1)171 1)785 3)866 4)438 5)486
D"0)01 Dp

i(II)
!p

i(I)
D/p

i(I)
(%) 0)00 0)00 0)00 0)00 0)00 0)00
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several values of angular spacing a. Comparisons were carried out with analytical results
obtained with the methodology used in reference [9] (for a single span curved H-beam with
the same outer angular spacing a). The Column &a' shows results allowing shear #exibility
whereas Column &b' shows results without shear #exibility, but allowing rotary inertia. As it
may be appreciated, convergence is good enough even with 21 element, i.e., seven elements
over each span. In Table 2 the frequencies, which were compared with the analytical method
[9], have the sinusoidal modes shown in Figures 3(a) and 3(b) respectively. These two modes
are referred to the vertical displacement v

c
and they correspond, respectively, to the third

and sixth modes of the single span curved H-beam studied in reference [9].

4.2. COMPARISON WITH VLASOV MODELS

In Table 3 comparisons with the non-dimensional frequencies (actually p
i
"

XJ(oAl4
a
)/(n4EI

z
)) of reference [3] are presented. Results are given for outer angular
JSV=20003055=Ravi=VVC



108 M. T. PIOVAN E¹ A¸.
spacing (a) of 45, 90 and 1803 (i.e., 15, 30 and 603 on each span) and with the outer boundary
conditions SS}SS. It is important to point out that the mathematical model studied in
reference [3] is the classical Vlasov model for curved beams, i.e., a model that does not allow
rotary inertia and shear #exibility, moreover these equation were solved with a closed-form
solution.

For each angular spacing, two di!erent sets of the dimensionless parameter MC, m, DN
(which are de"ned in reference [3]) were selected. Then C"GJ/(EI

z
) is the ratio between

the torsional and #exural rigidities, m"r
p
/R is the ratio between the polar radius of

gyration and the horizontal radius of curvature and "nally D"EC
w
/(EI

z
R2) is a parameter

related to warping and #exible rigidities.
In order to reproduce frequencies as accurately as possible a large number of elements

was adopted for each calculation. Therefore, models with 81 elements without shear
#exibility were prepared for this task. Then in Table 3, it is possible to see an excellent
matching in all the cases performed, and the maximum error is 0)12%.

4.3. OPEN H-CROSS SECTION

In Tables 4 and 5 the frequencies for the case of an open H-cross-section are presented.
For these tables, the frequencies were obtained with models of 81 elements of equal length.
In these tables results calculated with the shear #exible model and the Vlasov model are
shown. Table 4 depicts the "rst frequencies (Hz) for values of a"90 and 1203, with outer
boundary conditions SS}SS, whereas Table 5 shows the frequencies for the aforementioned
angles but with outer supports C}C.

With the purpose to evaluate the in#uence of the shear e!ect on the free vibrational
behavior of the structural members studied, the following quantity e (%)"D f

Vlasov
!

f
shear

D/f
shear

is de"ned as a measure of the di!erence between the model accounting for shear
TABLE 4

Frequencies (Hz) for beams with an H cross-section and SS}SS outer boundary conditions: I,
allowance for shear -exibility, rotary and warping inertia, II, <lasov model

a (deg) h/R Case f
1

f
2

f
3

f
4

f
5

f
6

90 0)200 I 519)21 603)73 738)77 767)79 797)64 903)04
II 645)42 877)16 1309)61 1389)33 1729)87 2477)68

0)100 I 137)31 191)06 286)01 308)69 326)54 365)41
II 147)66 222)58 342)34 388)43 459)35 629)81

0)050 I 29)83 53)21 88)83 119)67 126)29 142)21
II 30)39 56)74 94)82 128)15 139)71 170)62

0)025 I 5)95 13)62 24)79 40)14 49)86 50)93
II 5)96 13)92 25)51 40)85 51)39 51)85

120 0)200 I 282)38 366)02 511)04 565)16 587)06 648)81
II 327)19 487)62 750)91 853)07 1021)21 1415)31

0)100 I 64)26 109)26 179)67 234)68 244)86 268)04
II 67)11 124)00 205)43 270)53 299)45 375)48

0)050 I 12)25 29)04 52)70 85)47 101)20 104)18
II 12)31 30)49 55)85 88)92 105)36 111)35

0)025 I 2)36 6)75 12)88 19)57 27)27 35)99
II 2)36 6)84 13)09 19)72 27)94 37)02
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TABLE 5

Frequencies (Hz) for beams with an H cross-section and C}C outer boundary conditions: I,
allowance for shear -exibility, rotary and warping inertia, II, <lasov model

a (deg) h/R Case f
1

f
2

f
3

f
4

f
5

f
6

90 0)200 I 603)73 738)77 797)64 799)96 903)04 990)23
II 877)15 1309)61 1593)28 1729)87 2477)68 2989)80

0)100 I 191)06 286)01 326)54 338)48 365)41 388)73
II 222)58 342)34 417)40 459)35 629)81 753)42

0)050 I 53)21 88)83 111)07 126)29 142)21 152)21
II 56)74 94)82 118)72 139)71 170)62 196)68

0)025 I 13)62 24)79 33)75 49)86 52)12 55)33
II 13)92 25)51 35)14 51)39 53)37 57)54

120 0)200 I 366)02 511)04 575)74 587)06 648)81 704)21
II 487)62 750)91 918)30 1021)21 1415)31 1696)38

0)100 I 109)26 179)67 221)16 224)86 268)04 282)74
II 124)00 205)43 256)15 299)45 375)48 437)59

0)050 I 29)04 52)70 70)70 103)57 104)18 110)65
II 30)49 55)85 76)31 109)25 111)35 120)28

0)025 I 6)75 12)88 19)54 27)27 35)99 42)44
II 6)84 13)09 20)19 27)94 37)02 43)92

Figure 4. Curves of error versus relation h/R for the cases of Tables 4 and 5: (a) Case 903 of Table 4, (b) Case 903
of Table 5, (c) Case 1203 of Table 4, (d) Case 1203 of Table 5; e%: percent di!erence; h/R: height}radius ratio.
(}r }, First frequency; }j }, second frequency; }m }, third frequency; }h }, fourth frequency; }e }, "fth
frequency; }s }, sixth frequency.)

CURVED THIN-WALLED BEAMS 109
#exibility and the Vlasov's model. The curves of e versus h/R for each frequency number of
Table 4 and 5 are presented in Figure 4. As it could be clearly seen in Figure 4, for a given
H-cross-section, the di!erences between frequencies calculated by Vlasov's model and the
model including shear #exibility rise uniformly with the ratio h/R. These curves show how
JSV=20003055=Ravi=VVC



110 M. T. PIOVAN E¹ A¸.
signi"cant is the shear e!ect on the dynamics of thin-walled open beams. For example, the
"rst frequency of a deep beam, corresponding to h/R"0)200 and a"903 with clamped
ends, has a di!erence of e"45% (Figure 4(b)), but the sixth frequency of the same case has
a di!erence of e"202%. However, in the case of slender beams, say h/R"0)025 and lower,
these di!erences are small (less than 3%) for all the frequencies considered.

4.4. CLOSED CROSS-SECTION

In Tables 6 and 7 the frequencies for the case of closed-rectangular cross-section are
presented. These tables exhibit the same pattern as the previous ones, except for the box
section described in Table 1. Thus, Table 6 shows the frequencies (Hz) for the values of a of
90 and 1803, with SS}SS outer boundary conditions, whereas Table 7 shows the frequencies
for the angles mentioned above but with C}C outer supports.

In Figure 5, it is possible to see curves of e versus h/R for the six frequencies of Table 6 and
7. Di!erences between Vlasov and present models are noticeable. For example, the third
frequency in Figure 6(a) has e"34% at h/R"0)100, but the sixth frequency in Figure 5(b)
has e"99% at h/R"0)200. However, observing Figure 5 and comparing it with Figure 4,
one may see a very di!erent in#uence of the shear e!ect on the dynamics of curved beams
with rectangular closed sections. Some frequencies have a uniform increase of e with h/R
and some other have di!erent behavior. In fact, for a given frequency number, e may
increase with h/R in the whole range, like for example f

1
, f

2
and f

3
in Figure 5(c), however for

other frequencies e could decrease after certain values of h/R, like f
3

in Figure 5(b) or f
4
, f

5
and f

6
in Figures 5(c) and 5(d). The explanation of this behavior is related to the qualitative

and quantitative variation, with h/R, of the mode characteristics for a given frequency
number. A coupled #exural-torsional mode of the frequency could change to a dominant
torsional mode (where, for a closed section the warping is negligible) depending on the
TABLE 6

Frequencies (Hz) for beams with closed cross-section and SS}SS outer boundary conditions: I,
allowance for shear -exibility, rotary and warping inertia, II, <lasov model

a (deg) h/R Case f
1

f
2

f
3

f
4

f
5

f
6

90 0)200 I 733)84 811)89 976)16 1236)26 1242)53 1255)64
II 922)78 1114)88 1279)17 1387)89 1540)18 2080)14

0)100 I 229)76 279)52 374)17 617)05 619)16 623)44
II 253)09 331)75 488)50 627)65 635)56 657)12

0)050 I 62)34 79)95 114)87 242)36 267)35 308)35
II 64)10 84)22 125)61 270)05 307)87 309)24

0)025 I 15)95 20)83 30)75 65)75 74)37 89)97
II 16)07 21)12 31)50 67)78 77)53 95)49

180 0)200 I 189)33 248)38 355)14 682)41 684)19 688)04
II 202)75 287)21 447)04 716)90 725)01 746)58

0)100 I 51)13 70)91 108)24 229)83 256)37 302)00
II 52)16 74)18 117)18 253)09 292)42 347)44

0)050 I 13)07 18)46 28)90 62)35 71)33 87)30
II 13)13 18)68 29)53 64)09 74)17 92)37

0)025 I 3)28 4)66 7)36 15)95 18)41 22)82
II 3)29 4)68 7)40 16)07 18)59 23)16
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TABLE 7

Frequencies (Hz) for beams with closed cross-section and C}C outer boundary conditions: I,
allowance for shear -exibility, rotary and warping inertia, II, <lasov model

a (deg) h/R Case f
1

f
2

f
3

f
4

f
5

f
6

90 0)200 I 811)89 976)16 1067)47 1242)53 1255)64 1262)95
II 1113)85 1277)49 1325)59 1540)18 2080)14 2498)71

0)100 I 279)52 374)17 425)21 619)16 623)44 625)63
II 331)75 488)50 576)98 635)56 657)12 687)22

0)050 I 79)95 114)87 136)24 267)35 309)01 310)41
II 84)22 125)61 153)32 307)87 310)86 315)34

0)025 I 20)83 30)75 37)23 74)37 89)97 99)36
II 21)12 31)50 38)47 77)53 95)49 106)89

180 0)200 I 248)38 355)14 412)82 684)19 688)04 690)78
II 287)21 447)04 545)01 724)43 745)98 773)03

0)100 I 70)91 108)24 131)24 256)37 302)00 326)86
II 74)18 117)18 146)16 292)42 348)32 352)53

0)050 I 18)46 28)90 35)76 71)33 87)30 96)95
II 18)68 29)53 36)86 74)17 92)37 103)98

0)025 I 4)66 7)36 9)16 18)41 22)82 25)59
II 4)68 7)40 9)23 18)59 23)16 26)07

Figure 5. Curves of error versus relation h/R for the cases of Tables 6 and 7: (a) Case 903 of Table 6, (b) Case 903
of Table 7, (c) Case 1803 of Table 6, (d) Case 1803 of Table 7; e%: percent di!erence; h/R: height}radius ratio.
(}r }, First frequency; }j }, second frequency; }m }, third frequency; }h }, fourth frequency; }e }, "fth
frequency; }s }, sixth frequency.)
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values of h/R for a particular frequency number and geometrical features. Actually, in
Figures 5(c) and (5d) it is possible to appreciate a very di!erent behavior beyond
h/R"0)100 in frequencies f

4
, f

5
and f

6
. These frequencies have basically a coupled

#exural-torsional motion, but for h/R"0)200, the motion changes to a predominant
torsional mode.
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Figure 6. Mode shapes of the "rst frequency ( f
1
) for the beam with closed section, a"903 and SS}SS outer

boundary conditions K: measure of motion characteristics; v
c
: vertical displacement, /: torsion angle.

112 M. T. PIOVAN E¹ A¸.
Unlike what occurs in the thin-walled open sections, thin-walled closed sections do not
manifest a quite considerable di!erence between Vlasov and present models, when the
motion is predominantly torsional. In order to explain the behavior of e in Figures
5(a)}5(d), the non-dimensional parameter K"Dh/2 /

max
/v

cmax
D is de"ned as a measure of the

motion characteristics for a given frequency. That is, values of K quite greater than one
reveal dominant torsional modes, values of K closer to zero correspond to dominant
#exural modes, values of K belonging to the interval (0)1, 1)0) may be accepted as coupled
#exural-torsional modes.

Figures 6}11 depict a sequence of mode shapes at some frequencies showing the
aforementioned qualitative and quantitative variation. Thus, Figures 6}8 show the mode
shapes of variables v

c
, / and the corresponding parameter K for frequencies f

1
, f

2
and f

3
,

respectively, calculated with both models, the case of a"903 with SS}SS outer boundary
conditions, for h/R"0)05 and 0)20. Then in Figures 6}8, it is possible to appreciate that, for
JSV=20003055=VVC!Ravi



Figure 7. Mode shapes of the second frequency ( f
2
) for the beam with closed section, a"903 and SS}SS outer

boundary conditions K: measure of motion characteristics; v
c
: vertical displacement, /: torsion angle.

CURVED THIN-WALLED BEAMS 113
a given frequency and a value of h/R, the mode shape of each variable is not di!erent, and it
is the same for both models. Just for instance, the mode shape of v

c
in the present model is

the same at h/R"0)05 and 0)20, it occurs also in the Vlasov model. However, quantitative
di!erences appear in the Vlasov model for f

3
(Figure 8). This mode is #exural-torsional at

h/R"0)05 (i.e., K"0)320) and it changes to a torsional-dominant mode at h/R"0)20 (i.e.,
K"5)250). With little di!erences, the same response could be observe in Figure 5(b), i.e., for
the same angular opening but with C}C outer boundary conditions.

Figures 9}11 show the mode shapes of variables v
c
, /, and the corresponding parameter

K for frequencies f
4
, f

5
and f

6
, respectively, calculated with Vlasov and present models, but

for a"1803, cases h/R"0)10 and 0)20 (Table 6). The mode shapes at these three
frequencies change abruptly from a coupled #exural-torsional mode at h/R"0)10 (i.e.,
K(1) in both models to a dominant torsional mode at h/R"0)20, except in the case of f

6
(Figure 11) where the Vlasov model already has a dominant mode at h/R"0)10 (i.e., K"8).
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Figure 8. Mode shapes of the third frequency ( f
3
) for the beam with closed section, a"903 and SS}SS outer

boundary conditions K: measure of motion characteristics; v
c
: vertical displacement, /: torsion angle.

114 M. T. PIOVAN E¹ A¸.
Also, in this "gure it is possible to see a change in the mode shape when one moves from
h/R"0)10 to 0)20 for a given frequency number.

5. CONCLUSIONS

A "nite element analysis of the out-of-plane vibrations of continuous thin-walled curved
beams was performed. Special emphasis was given to the in#uence of the shear #exibility,
due to bending and warping, over the dynamics of the member. The convergence analysis
and the comparisons with exact results show the very good performance of the element
employed.

It may be concluded from the present analysis that the shear e!ect is quite noticeable for
frequencies associated with high modes or even with low modes in the case of deep beams.
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Figure 9. Mode shapes of the fourth frequency ( f
4
) for the beam with closed section, a"1803 and SS}SS outer

boundary conditions K: measure of motion characteristics; v
c
: vertical displacement, /: torsion angle.

CURVED THIN-WALLED BEAMS 115
Moreover, the shear e!ect showed di!erent in#uences depending on the cross-section
type, i.e., if the section is open or closed. The relative di!erence (e) between frequencies
obtained with Vlasov and present models, for the case of the H-open section, decreases
uniformly with h/R (Figure 4). However, for the closed section, e decreases uniformly with
h/R only for certain frequencies but for other frequencies the variation of e with h/R is
connected with qualitative and quantitative changes in its dominant mode (which are
distinguished by the introduced parameter K) especially when a #exural}torsional coupled
mode changed to a torsional-dominant mode (Figures 9}11).

From the present study it should be concluded that the shear e!ect should be taken into
account in the dynamic analysis of these types of structures at least when deep beams or
high modes are considered.
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Figure 10. Mode shapes of the "fth frequency ( f
5
) for the beam with closed section, a"1803 and SS}SS outer

boundary conditions K: measure of motion characteristics; v
c
: vertical displacement, /: torsion angle.

116 M. T. PIOVAN E¹ A¸.
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